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Multiple paternity is ubiquitous within the polyphyletic group called ‘rep-
tiles’, especially within the lizards and snakes. Therefore, the probability
of sperm competition occurring, and being intense, is high. Squamates exhi-
bit a diversity of tactics to ensure fertilization success in the face of sperm
competition. The duration of female sperm storage, which can be many
months and even years in some species, remains an enigma. Here, we
emphasize some mechanisms that might affect patterns of paternity, the
source and function of ejaculates and features of the female reproductive
tract that may aid in long-term sperm storage. In doing so, we present a
new analysis of the relationship between sperm size, the strength of sperm
competition and the duration of female sperm storage. Lizards and snakes
are a diverse group that has provided many excellent models for the
study of an array of life-history strategies. However, when it comes to
postcopulatory sexual selection, there is much left to discover.

This article is part of the theme issue ‘Fifty years of sperm competition’.

1. Sperm competition in squamates

Over the past 50 years, postcopulatory sexual selection—sperm competition
and cryptic female choice—has become a significant area of research [1],
which has many outstanding questions at every level of analysis, from proxi-
mate to ultimate [2]. Our understanding of postcopulatory mechanisms is
notably sparse in taxa other than mammals, birds and insects. The polyphyletic
group ‘reptiles’, including turtles, crocodilians, snakes and lizards (but exclud-
ing birds), represents nearly 30% of terrestrial vertebrates. Squamates constitute
approximately 95% of reptiles and are a monophyletic group sister to Archo-
saurimorpha, which includes birds, turtles and crocodilians [3]. Here, we
review the literature on squamate reptiles—mainly lizards and snakes—the
source and functions of ejaculates, and female sperm storage, and present an
analysis of the relationship between sperm size and relative testes mass and
the duration of female sperm storage.

2. Multiple paternity

Decades before Geoff Parker [1] launched the study of sperm competition,
Frieda and Frank Blanchard described long-term sperm storage (approx.
eight months) and multiple paternity in garter snakes [4]. Squamates have
since been valuable subjects for examining female sperm storage (snakes
reviewed in [5], lizards reviewed in [6]).

Although sperm competition also occurs between sperm geno- and pheno-
types within a single ejaculate [7], here we define sperm competition as
occurring when the ejaculates of more than one male overlap within the repro-
ductive tract of a female, which typically leads to multiple paternity when there
is no complete bias towards one rival [8]. Multiple paternity is widespread in
squamates [9]; well over 50% of clutches/litters from wild populations exhibit
multiple paternity, the degree of which depends on mate encounter rates and
mating systems [9]. Snakes, in particular, seem to have higher risk and intensity
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of sperm competition than lizards [9]. However, many factors
determine whether a particular female mates with more than
one male [10] and the distribution of paternity among those
males when she does [9,11,12], which may be due, in part,
to the duration of female sperm storage.

There are many reasons female sperm storage may evolve
under natural selection, for example, delaying fertilization
until mates are available or environmental conditions are
optimal [13]. However, female sperm storage also extends
the overlap of ejaculates within the oviduct—the defining
condition for sperm competition [1]. As competition for ferti-
lization generates strong selection on sperm and ejaculate
traits, the null hypothesis may be that female sperm storage
is simply a consequence of selection on sperm longevity
[13]. However, given the high incidence of multiple paternity
for most squamates, it seems unlikely that selection on female
sperm storage is driven solely to ensure fertilization [11].

In squamates, like many amniotes, the vagina and posterior
oviduct have concentrations of mast cells [5], which facilitate
allergic reactions and inflammation. In mammals, mast cells
induce neutrophil migration into the oviducts in response
to mating and seminal fluids [14]. Indeed, selective immune
responses to particular males, or their sperm, are intriguing
mechanisms by which paternity may be biased towards or
away from particular males [15]. Male genital or seminal
fluid phenotypes could also influence female physiological
responses leading to differential fertilization success. For
example, the spines adorning male intromittent organs—
hemipenes—could stimulate females to resist or facilitate
sperm transfer [16,17], damage the vaginal pouch and/or
induce immune responses to particular male phenotypes.
These processes might influence differential sperm transport
and storage or lead to mate-order effects by making the
female reproductive tract less hospitable to the next male’s
sperm [18,19]. Likewise, seminal fluid could elicit some of
the same effects as genitalia and sperm themselves could
affect female receptivity to mating [20] as they move into
female sperm storage tubules (SSTs). Indeed, the muscular
vaginal pouch of garter snakes affects sperm and copulatory
plug (CP) transfer, indicating sexual conflict and the potential
for cryptic female choice during copulation [16,17].

Beyond the vaginal pouch, the squamate oviduct is a tube
lacking elaborate sperm-storage organs that might mechani-
cally control sperm entry or usage. Nevertheless, sperm
storage in SSTs is conserved across the squamate phylogeny
[5,6,21]. The location of SSTs within the oviduct varies con-
siderably across, or sometimes within, squamate families,
but the evolutionary significance of these arrangements are
only vaguely understood. SSTs are commonly found in the
vaginal pouch and infundibulum. Some lineages, like colu-
brid snakes and phrynosomatid lizards, store sperm in both
regions [21], but little is known about the timing of sperm
movement and its effect on paternity. The location of
secretory cells within SSTs also varies and is correlated
with sperm storage duration. Species with secretory cells
towards the opening (proximal) of SSTs tend to store
sperm for shorter periods than do species with secretory
cells toward the end (distal) of SSTs, while species with pro-
longed sperm storage have secretory cells throughout the

SSTs [21]. But again, more work is needed to address the n

functional significance of the secretions on sperm longevity,
sperm selection and fertilization success among males.

In the few species studied thus far, seasonality of SST
secretions coincides with mating (e.g. reviewed in [5,6]),
suggesting that females, at minimum, support sperm trans-
port to the SSTs. Secretions at SST openings may attract
sperm and then provide mechanical protection to prevent
sperm losses [6], but this could be tested by assaying sperm
velocity and chemotaxis toward these secretions in vitro.
Because sperm remain viable beyond the active period of
secretory cells, Siegel et al. [6] seemed dubious that secretions
served a nutritive function that might aid sperm longevity.
However, recently, secretory activity of SSTs was demon-
strated to continue outside the reproductive season,
indicating long-term female support of sperm in two coral
snakes (Micrurus sp.) [22]. Perhaps changes in secretory com-
position or embedding of sperm within the epithelium prior
to the cessation of secretory activity places sperm in a quies-
cent, lowered metabolic state until ovulation that would aid
sperm longevity. Differences among males in their capacity
to endure in the conditions females provide would enhance
their competitive fertilization success.

The hypotheses of strong selection on long-term sperm
viability within the male reproductive tract (especially in disso-
ciated breeders) may also explain long-term sperm storage
within the female [11]. However, it is hard to imagine that SST
secretions do not aid sperm viability in some way, but we do
not have enough evidence to adjudicate the question. Gene
expression of SSTs in mated versus unmated females [23] and
the ductus deferens (snakes) or epididymis (lizards), coupled
with protein analysis and functional assays, would yield critical
data. Devine [24] suggested that SSTs with different probabil-
ities of contributing to fertilization can cause direct (by
females) or indirect (by males) bias in paternity among males
thus generating mate-order effects on fertilization. One might
test differential storage of sperm by spiking males” food using
fluorophores and then conducting staged polyandrous matings
and histological studies of the oviducts [25].

Mating order and mating interval effects on paternity are
essential components of selection that can set the relative
costs and benefits of various offensive and defensive strat-
egies for males (e.g. mate guarding or CPs) and whether
females might use these to their evolutionary advantage.
Few studies of squamates have used staged or controlled
matings to assess sperm competition to study the basic effects
of mating order or mating interval.

Presumably, species-specific mate order effects may be
determined by the morphology of sperm storage organs
and the loading-order of sperm within them; physiological
effects of sperm or semen on the female reproductive tract;
or effects of semen from the first mating on the performance
of the next male to mate’s sperm [24]. In the sand lizard
(Lacerta agilis), there are no mate order or mating interval
effects on the probability of paternity, regardless of whether
two males mate within an hour or with 24 h between matings
(the second category representing an approximate mate
guarding interval [26]). In the European common lizard (Zootoca
vivipara), females take advantage of the second male mate



order advantage to trade up to a male with better body con-
dition or greater heterozygosity [27,28]. Furthermore, the
mate order effect on paternity share in Z. vivipara depends
on both the interval between matings and the period between
mating and ovulation: paternity was mixed between males at
short intervals, but first male advantage increased drastically
with longer delays between matings closer to ovulation [29].
In brown anole lizards (Anolis sagrei), the first male to mate
sires more offspring [30], but this effect fades over time in
the laboratory [31]. In Australian painted dragons (Cteno-
phorus pictus), there is no effect when matings are about
1 hour apart [32]; however, sperm stored from field matings
two weeks before ovulation had an advantage over those
from subsequent matings in the laboratory, suggesting a
weak first male advantage that gradually disappeared with
successive clutches, presumably as sperm are used or lost
from storage sites during ovulation and egg retention
between laying events, as seems likely the case in anoles [11].

There have been only three studies of mate order effects in
snakes. In Eurasian vipers (Vipera berus), the first male to
mate sires an average of 60% of the offspring and all of the
offspring in 25% of the litters [33]. In the red-sided garter
snake (Thammnophis sirtalis parietalis), when females mated
with two males in the spring, the first male to mate gained
paternity share as the mating interval increased [34]. When
the females mated with a single male, 85% of litters nonethe-
less exhibited multiple paternity, with the single spring male
siring 67% of the offspring [35]. Offspring that could not be
attributed to the spring males indicates that the females
stored sperm for at least seven months over winter (September
to May). Indeed, female garter snakes (Thamnophis) have been
documented giving birth to live young after isolation from
males for well over a year [36].

Paternity success from autumn matings and, thus, female
sperm storage (or sperm longevity) can facilitate posthumous
male reproductive success, a phenomenon known to occur,
for example, in side-blotched lizards (Uta stansburiana) [37]
and two species of dragon lizards (Ctenophorus fordi and C.
pictus) [32,38]. The potential benefits of posthumous paternity
may generate selection for long-term sperm viability or coe-
volution of sperm and the oviduct’'s physiological
environment. Furthermore, siring offspring posthumously,
thus extending the male reproductive lifespan, may provide
a payoff for higher investment into current reproductive
efforts at the expense of somatic maintenance, especially
when conspicuous displays or behaviour increases mortality
due to predation [39]. These various mate-order and mating
interval effects on patterns of paternity are not yet under-
stood mechanistically. It is not clear whether mating
systems or tactics are the results or determinate of the evol-
ution of mate order and intervals; it is likely a dynamic
process. Female anatomy and physiology set the stage for
sperm competition. However, the ejaculates—sperm and
seminal fluid—also evolve in response to selection due to
sperm competition and can be a source of sexual conflict [40].

Squamates lack sexual accessory glands, but the sexual seg-
ment of the kidney (SSK, or renal sexual segment, RSS) is
the principal source of seminal fluid [41]. The SSK, an epi-
thelium lining nephrons’ distal tubules, hypertrophies

seasonally under the influence of androgens [42]. Mechan-
isms for seminal fluid secretion from the SSK and transport
through the ureter to the cloaca are debatable [43,44].

The squamate SSK may derive from an ancestral con-
dition shared with fish and amphibians [45], and it may be
homologous to the mammalian seminal vesicles or prostate
[46]. In snakes, the SSK can represent 60-85% of kidney
mass [43, table 11.2]. Thus, the SSK is an attractive, but
under-studied, evolutionary model of accessory sex glands.

Seminal fluids may enhance sperm movement and viabi-
lity, protect paternity or impede rival ejaculates [14].
However, using vasectomized (i.e. SSK secretions only, no
sperm) sand lizards (Lacerta agilis), Olsson et al. [26] showed
that seminal fluid itself does not reduce rival males’ pater-
nity; in fact, females first mated to a vasectomized male
had higher fertility. In the only study to test for effects of rep-
tilian seminal fluid on sperm motility or velocity, Cuellar et al.
[47] demonstrated that anole lizard seminal fluid sustains
and activates sperm. Accessory gland proteins like those in
Drosophila [48] have not been described in squamates. How-
ever, garter snake seminal fluid has prostaglandins [49] that
may affect female receptivity, ovulation or egg production
[50]. Female garter snakes that mated with vasectomized
males’” SSK secretions only (no sperm) remated at greater
rates than females mated with intact males [20], suggesting
CPs do not contain anti-aphrodisiacs but may still affect
ovulation and female fecundity.

CPs are often viewed as defences against sperm compe-
tition. The focus has been on their role as passive mate
guarding devices ensuring fertilization success of the first
male to mate and compromising that of subsequent males.
CPs also potentially limit female choice and, thus, generate
sexual conflict (enforced chastity; [51]). However, in squa-
mates, albeit with limited studies, the defensive utility has
not been robustly borne out.

In Iberian rock lizards (Iberolacerta monticola), SSK-derived
CPs do not prevent subsequent matings or reduce female
receptivity [52]. Males that mate when the first male’s CP is
still intact have higher fertilization success than when the
CP has started dissolving [52]. In some species of garter
snakes, CPs contain the sperm and thereby prevent sperm
leakage or ejection by the female [16,17,41,53]. Dislodging
the CP would severely limit a male garter snake’s reproduc-
tive success, but none of us have observed this dislodgement
in real time, and females are often observed with two plugs in
their cloaca. Multiple paternity is high in garter snakes
[9,34,35], and a number of females remate with CPs intact
or after they dissolve [51]. In other species of snake, CPs
are less coherent, do not adhere to the female’s cloaca and
contain few or no sperm [54]. Unfortunately, there are few
verified records of CPs in squamates (but see [55]). This
deficiency of data, which may represent underreporting of
CP absence and the inconspicuousness of some CPs in situ,
makes comparative analyses difficult, but this would be an
especially fruitful and useful research project to guide our
understanding of the costs and Dbenefits of ejaculate
expenditure.

Ejaculates are not cheap [56,57]; for example, CP pro-
duction can be 5-18% of daily energy expenditure for male
garter snakes [58]. Therefore, ejaculate adjustment is likely
common. In Z. vivipara, it is challenging to assign mate
order effects to female physiological processes and reproduc-
tive tract morphology because copulation duration, and thus



sperm transfer, also depends on an interaction between mate
order and interval. This finding suggests males adjust ejacu-
lates based on sperm competition intensity [29,57]. Indeed,
male Mallee dragons (Ctenophorus fordi) copulate for 60%
longer, and deposit more sperm, when mating after they
have observed the female mate with another male [59].
When mating with unmated females, male sand lizards
extend copulation duration, and thus ejaculate investment,
based on female size [26,60], and a male uses olfactory cues
to adjust copulation duration in relation to his rival’s related-
ness with his female because paternity is biased against
related males [60,61]. Such responses to perceived sperm
competition or mate quality are not limited to seminal
fluid—sperm morphology also responds to environmental
and internal cues. In Anolis sagrei, males in better body con-
dition have longer sperm and higher sperm counts, changes
that also occur in response to the level of competition for
mates [62,63].

The remarkable diversity in sperm morphology among
species has been attributed to variation in the strength of
sperm competition and cryptic female choice, and squamate
reptiles are no exception to this rule. In general, squamates
have a long, filiform sperm cell that varies considerably in
size between species (range: 28.5 pm-159.4 pm; electronic
supplementary material, table S1 and figure S1) and can
differ between populations and individuals [62-64]. The
sperm contains a head, which can range from straight to cork-
screw in shape; a midpiece, which contains the mitochondria
and surrounds the axoneme; and a flagellum, which contains
the axoneme surrounded by a fibrous sheath and dense
outer fibres [65]. Though squamate sperm share a similar gen-
eral shape, there is a substantial difference in midpiece size
between lizards and snakes. Snakes have a midpiece that
makes up roughly half of the total cell length, while lizard
midpiece size is roughly 5% of the cell. The reason for this
difference is currently unknown; however, we present data
suggesting that it could be due to variation in the strength
and targets of sperm competition stemming from differences
in reproductive cycles between snakes and lizards.

Currently, only two comparative analyses examining
squamate sperm and sperm competition exist in the litera-
ture. In snakes, Tourmente et al. [65] found that as the
strength of sperm competition increased (using increase in
relative testis size as a proxy), midpiece and flagellum size
increased. However, Kahrl et al. [66] found no relationship
between the strength of sperm competition and sperm mor-
phology in Anolis lizards. We have expanded upon these
findings by including more species in our analyses to give
an enhanced view of the evolution of sperm across squamates.
As relative testes size can function as a potential indicator of
the strength of postcopulatory selection, we also tested for
differences in the rates of evolution of testes size (with body
size as a reference) in snakes and lizards (detailed methods
and data can be found in electronic supplementary material).

We found no relationship between sperm morphology
and sperm competition (relative testes size) in lizards (p >
0.07); however, we found a significant positive association
between sperm competition and midpiece length in snakes
(electronic supplementary material, figure S1). In both

snakes and lizards, our models revealed that the midpiece n

evolves 2-10 times faster than the head and flagellum
(figure 1a,b). In lizards, body mass evolves more than two
times faster than testes mass, whereas we found the exact
opposite pattern in snakes (figure 1c,d; electronic supplementary
material, table S2).

These analyses demonstrate that the strength of sperm
competition in snakes and lizards is quite different. Testes
mass evolves faster than body mass in snakes, while the
reverse is true in lizards, suggesting that sperm competition
(or selection for increased sperm production) is stronger in
snakes than in lizards. This result supports findings from
other studies that show higher rates of multiple paternity in
wild-caught snakes than in lizards (see the section on mul-
tiple paternity above). While the midpiece evolves quickly
in both groups, midpiece length is only evolutionarily correlated
with testes mass in snakes. If the midpiece is evolutionarily
labile in both groups, but snakes experience more substantial
selection for a longer midpiece, this pattern may explain how
midpieces have reached their exaggerated state in snakes.

Though sperm competition seems to shape midpiece size
in squamates, we have no clear explanation for why this is
occurring. One potential option is the need for extended
sperm storage in some species of snakes. While most lizards
and many snakes have associated reproductive cycles, some
snakes have dissociated reproductive cycles where spermato-
genesis and fertilization are separated by several months
[67,68]. The need for sperm to survive for extended periods
in either the female or male reproductive tract could result
in selection for sperm with higher energy stores. Reptiles
are also the record holders for the maximum duration of
sperm storage across vertebrates [69], and snakes top the
charts with an impressive seven years of storage reported
for the Javan file snake (Acrochordus javanicus [70]). Lizards
also store sperm for extended periods, but the maximum
duration often only spans a single reproductive season [69].

To estimate the shortest interval that sperm need to be
stored in the male and female reproductive tracts, we sur-
veyed the literature for the species represented in our
sperm dataset and found the month when spermatogenesis
was at its peak and noted when copulations were reported
to identify these species as associative and dissociative bree-
ders. We then used data from the female reproductive cycle
to find the month of ovulation or when follicles were
enlarged. The interval between these two time-points was
our minimum duration of sperm storage, as it is our best esti-
mate of the shortest interval of time that sperm would need
to be retained to ensure fertilization. We found that snakes
have longer sperm storage durations than lizards and that
snakes have significantly longer sperm midpieces (electronic
supplementary material, figure S2A,B; see for details). We
attempted to test for a correlation between midpiece size
and sperm storage duration in just snakes (as lizards have
minimal variance in sperm storage duration), but with very
few species in our dataset (N =8) we did not detect a signifi-
cant correlation when accounting for phylogeny (however,
see details in electronic supplementary material, figure S3).

Though these data are a rough approximation of sperm
storage duration, they provide potential insight for selection
on longer midpieces in snakes. The cell’s midpiece contains
mitochondria; therefore, a longer midpiece could increase
the total amount of ATP the cell produces. In other species,
the total amount of ATP correlates with the level of sperm
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Figure 1. Rates of evolution of the sperm head, midpiece and flagellum and of body mass and testes mass for lizards (a,c) and snakes (b,d). Significant differences
(P < 0.05) among means are indicated by different letters. Full methods, all statistical analyses and results are presented in the electronic supplemental material.

competition in rodents [71] and potentially increases cell
longevity in birds [72]. Some evidence for this is a relation-
ship between longevity and midpiece size in some birds
[73] and fish [74]. However, there is conflicting evidence in
other avian species [75], and a study restricted to pheasants
found no relationship between the length of sperm storage
(less than 20 days), across a clutch, and midpiece length
[76]. Our analysis is the first, albeit very limited, test of an
association between sperm storage duration (five to eight
months) and midpiece length across snakes and one of the
very few in vertebrates. Hopefully, it will lead to future
studies in squamates and other groups to help unravel the
evolution of morphological diversity of sperm.

Squamate reptiles have extremely variable life histories that
may covary with the direction and strength of sexual selec-
tion, making them ideal models for comparative studies.
Their exceptionally high rates of polyandry, especially in
snakes, may suggest that perhaps multiple mating is not so
costly for females [9-11], although this may be hard to recon-
cile with copulations lasting for several hours in many snake
species (see also Madsen [77]). Examining not only the
benefits but also the costs associated with multiple and pro-
longed matings (i.e. sperm transfer), such as the risk of
injury, predation or disease, for both sexes, is an essential pro-
ject for squamate biologists [10,78]. Here, we have focused
mostly on sperm competition without much attention to

cryptic female choice, which is, of course, essential for a full
accounting of postcopulatory selection. To truly understand
the importance of sperm competition in squamates, we
need real estimates of selection on sperm traits from wild
populations, and we also need these studies to partition the
variance in reproductive success between pre- and postcopu-
latory episodes of
postcopulatory selection contributes to overall sexual selec-

selection to understand how
tion. Evolutionary patterns of sperm morphology and
seminal fluid composition, CP deposition and reproductive
anatomy are helpful, but these need to be complemented
with intraspecific data on selection. In addition, with the
risk of sexually transmitted infections and sperm being
foreign cells entering the female body, interactions between
the reproductive and immune systems have the potential to
influence postcopulatory sexual selection, yet these inter-
actions remain understudied, particularly in squamates
and other non-mammalian vertebrates. The remarkable
variation in genital morphology in squamates remains
unexplained, with copulatory sexual selection being the
most likely mechanism acting on genital traits. Studies on
the intraspecific variation of male and female genital
traits, a close examination of the form and function of the
genitalia of species found in hybrid zones, and further com-
parative morphological standardized
morphological techniques are all needed to discriminate

studies using

among hypotheses of genital evolution and determine
their relative contribution to existing phenotypes. We
encourage others to take up this challenge with us.
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